

SensoControl® Test Points Diagnostic-Test equipment Industrial Products

Parker流体连接件授权分销商联系方式:

信德迈科技(北京)有限公司 CNMEC Technology 地址:北京朝阳区望京街10号望京SOHO-T1-C座2115室 邮编:100102 Tel: 010-84282935, 8428 3983 13910962635 Fax: 010-84288762 email: sales@cnmec.biz web: http://www.cnmec.biz

Visual index

EMA1/EMA3-Test Point fitting

- For pressure monitoring and checking on high, low and negative pressure systems.
- For bleeding cylinders and hydraulic systems.
- For taking samples on high, low and negative pressure systems.

Advantages:

- Leakfree connection before valve is open
- Sturdy, safe constructions for small dimensions
- Easy handling
- Simple connection of measuring, control and switching devices
- Coupling under pressure up to 400 bar is possible with screw couplings
- Nominal pressures up to 630 bar
- Self locking metal guard cap, vibration resistant

Sealing system of the primary seal:

EMA1 by ball non-return valve.

EMA3 by cone seal with O-ring.

The new EMA3 sealing system guarantees minimum leakage rates.

The screw-on Cap (EMA3), and pin lock (EMA1) types both employ an O-ring seal as secondary sealing with the hose attached.

Differences between EMA1 and EMA3 types

- a) sealing system (see previous section)
- b) Test hose connection by plug-in coupling in EMA1 Test hose connection by threaded connection in EMA3
- c) Working pressures (see section advantages)

Working pressure

- EMA3 types up to 630 bar
- EMA1 types up to 400 bar
- Max. working pressure 630 bar for GMA, VKA and EMA... the recommended working pressure of fitting manufacturer has to be applied
- Joining under pressure up to 400 bar max.
- The allowable nominal pressures of each Test-Point are shown on the product pages.

Materials and Temperatures:

- Steel, zinc plated, Cr(VI)-free
- Stainless Steel, material 1.4571
- Seals:
- FKM (Temperature range –20 to +200°C)
- EPDM Ethylene Propylene (for Break Fluid)
 - (Temperature range –40 to +150°C) Hose:
 - Polyamide (Temperature range: -35°C ... 100°C max.)
- Stainless Steel FKM only

Media:

- Suitable for hydraulic oils and other mineral oil based fluids (Please pay attention to the sealing materials used!)
- For use in conjunction with other liquid media please consult Parker

Approvals

DVGW for EMA3/8X1OR, EMA3/10X1OR, EMA31/8NPT, EMA31/4NPT

Perbunan = registered trademark of Bayer

Test point fitting with pin-lock EMA1

Male stud thread: BSP, metric

T1	D1	L1	L2	S1	S2	Fig.	Weight g/1 piece	Order code*	PN (bar)1) CF	DF**
M 12×1.5	17.0	32.0	12.0		19	B	53	EMA1/12X1.5	400	4
M 14×1.5	19.0	32.0	12.0		19	B	56	EMA1/14X1.5	400	4
M 16×1.5	21.0	25.0	12.0		22	B	47	EMA1/16X1.5	400	4
G 1/8	14.0	32.5	8.0		17	B	41	EMA1/1/8	400	4
G 1/4	18.0	32.0	12.0		19	B	54	EMA1/1/4	400	4
G 3/8	22.0	27.5	12.0		22	B	55	EMA1/3/8	400	4
G 1/2	26.0	27.5	14.0		27	B	78	EMA1/1/2	400	4
M 08×1.0 M 10×1.0 M 10×1.0	9.5 11.5 14.0	17.5 18.0 32.5	8.4 8.0 8.0	12 12	17	A A B	16 18 42	EMA1/8X1OR EMA1/10X1OR EMA1/10X1	400 400 400	4 4 4

X1) O-ring X2) Cutting face

**DF = Design Factor

¹) Pressure shown = item deliverable

 $\frac{\mathsf{PN}(\mathsf{bar})}{10} = \mathsf{PN}(\mathsf{MPa})$

	Order c	ode suffixes	
Material	Suffix surface and material	Example	Standard sealing material (no additonal. suffix needed)
Steel, zinc plated, Cr(VI)-free	CF	EMA1/12X1.5CF	NBR

*Please add the suffixes below according to the material/ surface required.

Series 1

GMA1 Straight test point fitting with pin-lock

Series 1

											Weight		PN (bar)1)	
Series	D1	T1	D3	L1	L2	L3	L4	L5	S1	S2	g/1 piece	Order code*	CF	DF**
L ³)	06	M 12×1.5	4	35	21	10	51	29.0	24	14	73	GMA1/06LOMD	315	4
	08	M 14×1.5	6	35	21	10	51	29.0	24	17	75	GMA1/08LOMD	315	4
	10	M 16×1.5	7	37	23	11	53	29.0	24	19	80	GMA1/10LOMD	315	4
	12	M 18×1.5	8	37	23	11	53	30.5	24	22	96	GMA1/12LOMD	315	4
	15	M 22×1.5	11	39	25	12	55	32.0	30	27	121	GMA1/15LOMD	315	4
	18	M 26×1.5	14	39	24	12	57	33.0	32	32	139	GMA1/18LOMD	315	4
	22	M 30×2.0	18	43	28	14	61	35.0	36	36	171	GMA1/22LOMD	160	4
S4)	06	M 14×1.5	4	39	25	12	55	29.0	24	17	82	GMA1/06SOMD	400	4
	08	M 16×1.5	5	39	25	12	55	29.0	24	19	88	GMA1/08SOMD	400	4
	10	M 18×1.5	7	39	24	12	57	29.0	24	22	90	GMA1/10SOMD	400	4
	12	M 20×1.5	7	39	24	12	57	29.0	24	24	96	GMA1/12SOMD	400	4
	14	M 22×1.5	10	43	27	14	63	30.5	27	27	121	GMA1/14SOMD	400	4
	16	M 24×1.5	11	43	26	14	63	32.0	30	30	138	GMA1/16SOMD	400	4
	20	M 30×2.0	15	47	26	16	69	35.0	36	36	222	GMA1/20SOMD	400	4

**DF = Design Factor

1) Pressure shown = item deliverable

 3) L = light series; 4) S = heavy series

 $\frac{\mathsf{PN}(\mathsf{bar})}{10} = \mathsf{PN}(\mathsf{MPa})$

Delivery without nut and ring. Information on ordering complete fittings or alternative sealing materials see page I7.

Order code suffixes								
Material	Suffix surface and material	Example	Standard sealing material (no additonal. suffix needed)					
Steel, zinc plated, Cr(VI)-free	CF	GMA1/06LOMDCF	NBR					

Test point fitting with pin lock for cones VKA1

With 24° cone swivel nut connection

Series 1

X1)	O-rina
~	O mig

Series	D1	T1	L1	S1	S2	Fig.	Weight g/1 piece	Order code*	PN (bar)1) CF	DF**
3)	06	M 12×1.5	48	14	12	A	44	VKA1/06I	315	4
- /	08	M 14×1.5	49	17	12	A	54	VKA1/08L	315	4
	10	M 16×1.5	50	19	12	A	68	VKA1/10L	315	4
	12	M 18×1.5	51	22	12	A	81	VKA1/12L	315	4
	15	M 22×1.5	39	27	12	В	82	VKA1/15L	315	4
	18	M 26×1.5	38	32	12	В	112	VKA1/18L	315	4
S4)	06	M 14×1.5	48	17	12	A	51	VKA1/06S	400	4
	08	M 16×1.5	50	19	12	A	62	VKA1/08S	400	4
	10	M 18×1.5	50	22	12	A	78	VKA1/10S	400	4
	12	M 20×1.5	51	24	12	A	100	VKA1/12S	400	4
	14	M 22×1.5	39	27	12	В	88	VKA1/14S	400	4
	16	M 24×1.5	37	30	12	В	105	VKA1/16S	400	4
	20	M 30×2.0	44	36	12	В	174	VKA1/20S	400	4

**DF = Design Factor

¹) Pressure shown = item deliverable

³)L = light series; ⁴)S = heavy series

PN (bar) = PN (MPa)

10

		Order co	ode suffixes	
s	Material	Suffix surface and material	Example	Standard sealing material (no additonal. suffix needed)
4	Steel, zinc plated, Cr(VI)-free	CF	VKA1/06LCF	NBR

MAV-MA1Test Point pressure gauge connector with pin-lockSMA1Test Point high pressure hose with pin-lockSeries 1

Female thread: BSP Sealing: sealing ring DIN 16258

Pressure gauge connector: MAV-MA1

Test hose: SMA1

T1	L1	L2 max.	S1	S2	Weight g/1 piece	Order code*	PN (bar)1) CF	DF**
G 1/4	61.5	12	19	19	78	MAV1/4MA1	400	4.0
G 1/2	72.0	12	27	19	135	MAV1/2MA1	400	4.0
	400.0				21	SMA1-400	400	2.5
	630.0				26	SMA1-630	400	2.5
	800.0				26	SMA1-800	400	2.5
	1000.0				31	SMA1-1000	400	2.5
	1500.0				40	SMA1-1500	400	2.5
	2000.0				49	SMA1-2000	400	2.5
	2500.0				58	SMA1-2500	400	2.5
	3200.0				70	SMA1-3200	400	2.5
	4000.0				84	SMA1-4000	400	2.5

**DF = Design Factor

¹) Pressure shown = item deliverable

PN (bar) = PN (MPa)

*Please add the **suffixes** below according to the material/ surface required.

	Order c	ode suffixes	
Material	Suffix surface and material	Example	Standard sealing material (no additonal. suffix needed)
Steel, zinc plated, Cr(VI)-free	CF	MAV1/4MA1CF	NBR

For measuring with liquid pressure media please note:

pressure medium is prevented widely.

Bleed before connecting tube! By capillary action discharge of the

Note hoses with small diameter:

- Min. bending radius r = 20 mm
- Working temperature -20 °C up to 100 °C (short time to +120 °C)
 Hoses are to be protected from fire, from sharp-corners and hot
- objects.

Temperature factor of pressure rating:

up to	0°C	122 %
for	30 ° C	110%
for	50 °C	100 %
for	80 °C	86%
for	100 °C	77%

Series 3

Male thread: BSP, metric

							Weight		PN (I	par)1)	DF	**
T1	D1	L1	L2	S1	S2	Fig.	g/1 piece	Order code*	CF	71	CF	71
M 08×1.0	9.5	38.5	7.5	17		А	66	EMA3/8X1OR	250		4.0	
M 10×1.0	11.5	37.0	7.5	17		А	70	EMA3/10X1OR	630	630	4.0	4
M 14×1.5	18.8	39.5	11.0	19		F	79	EMA3/14X1.5ISO	630	630	4.0	4
M 10×1.0	14.0	40.0	8.0	17		D	67	EMA3/10X1	400		4.0	
M 12×1.5	17.0	38.0	12.0	17		D	74	EMA3/12X1.5	400		4.0	
M 14×1.5	19.0	39.0	12.0	19		D	78	EMA3/14X1.5	400		4.0	
M 16×1.5	21.0	40.0	12.0	22		D	90	EMA3/16X1.5	400		4.0	
G 1/8	14.0	37.5	8.0	17		D	70	EMA3/1/8	400		4.0	
G 1/4	18.0	39.0	12.0	19		D	77	EMA3/1/4	400		4.0	
G 3/8	22.0	40.5	12.0	22		D	91	EMA3/3/8	400		4.0	
G 1/2	26.0	46.0	14.0	27	17	Е	137	EMA3/1/2	400		3.4	
G 1/8	14.0	37.5	8.0	17		В	72	EMA3/1/8ED	400	400	4.0	4
G 1/4	19.0	39.0	12.0	19		В	76	EMA3/1/4ED	630	630	4.0	4
G 3/8	22.0	40.5	12.0	22		В	93	EMA3/3/8ED	630	630	4.0	4
M 10×1.0	14.0	40.0	8.0	17		В	71	EMA3/10X1ED	400	400	4.0	4
M 12×1.5	17.0	38.0	12.0	17		В	72	EMA3/12X1.5ED	630	630	4.0	4
M 14×1.5	19.0	39.0	12.0	19		В	77	EMA3/14X1.5ED	400	400	4.0	4
G 1/2	27.0	46.0	14.0	27	17	С	135	EMA3/1/2ED	400	400	4.0	4

**DF = Design Factor

¹) Pressure shown = item deliverable

PN (bar)

10

Order code suffixes									
Material	Suffix surface and material	Example	Standard sealing material (no additonal. suffix needed)						
Steel, zinc plated, Cr(VI)-free	CF	EMA3/10X10ORCF	NBR						
Stainless Steel	71	EMA3/10X10OR71	VIT						

GMA3 Straight Test Point with threaded connection M 16×2 Series 3

											Weight		PN (bar)1)		DF	**
Series	D1	T1	D3	L1	L2	L3	L4	L5	S1	S2	g/1 piece	Order code*	CF	71	CF	71
L ³)	06	M 12×1.5	4	35	21	10	51	49.0	24	14	126	GMA3/06LOMD	315	315	4	4
	08	M 14×1.5	6	35	21	10	51	49.0	24	17	128	GMA3/08LOMD	315	315	4	4
	10	M 16×1.5	7	37	23	11	53	49.0	24	19	132	GMA3/10LOMD	315	315	4	4
	12	M 18×1.5	8	37	23	11	53	50.5	27	22	145	GMA3/12LOMD	315	315	4	4
	15	M 22×1.5	11	39	25	12	55	52.0	30	27	174	GMA3/15LOMD	315	315	4	4
	18	M 26×1.5	14	39	24	12	57	53.0	32	32	192	GMA3/18LOMD	315	315	4	4
	22	M 30×2.0	18	43	28	14	61	55.0	36	36	220	GMA3/22LOMD	160	160	4	4
	28	M 36×2.0	23	43	28	14	61	57.5	41	41	259	GMA3/28LOMD	160	160	4	4
	35	M 45×2.0	30	47	26	16	69	60.0	46	50	363	GMA3/35LOMD	160	160	4	4
	42	M 52×2.0	36	47	25	16	71	64.5	55	60	419	GMA3/42LOMD	160	160	4	4
S4)	06	M 14×1.5	4	39	25	12	55	49.0	24	17	137	GMA3/06SOMD	630	630	4	4
	08	M 16×1.5	5	39	25	12	55	49.0	24	19	141	GMA3/08SOMD	630	630	4	4
	10	M 18×1.5	7	39	24	12	57	49.0	24	22	141	GMA3/10SOMD	630	630	4	4
	12	M 20×1.5	7	39	24	12	57	49.0	24	24	150	GMA3/12SOMD	630	630	4	4
	14	M 22×1.5	10	43	27	14	63	50.5	27	27	172	GMA3/14SOMD	630	630	4	4
	16	M 24×1.5	11	43	26	14	63	52.0	30	30	195	GMA3/16SOMD	400	400	4	4
	20	M 30×2.0	15	47	26	16	69	55.0	36	36	254	GMA3/20SOMD	400	400	4	4
	25	M 36×2.0	20	51	27	18	75	57.5	41	46	329	GMA3/25SOMD	400	400	4	4
	30	M 42×2.0	25	55	28	20	81	60.0	46	50	412	GMA3/30SOMD	400	400	4	4
	38	M 52×2.0	32	61	29	22	91	64.5	55	60	616	GMA3/38SOMD	315	315	4	4

**DF = Design Factor

¹) Pressure shown = item deliverable

³) L = light series; ⁴) S = heavy series

 $\frac{PN (bar)}{10} = PN (MPa)$

Delivery without nut and ring. Information on ordering complete fittings or alternative sealing materials see page I7.

Order code suffixes										
Material	Suffix surface and material	Example	Standard sealing material (no additonal. suffix needed)							
Steel, zinc plated, Cr(VI)-free	CF	GMA3/06LOMDCF	NBR							
Stainless Steel	71	GMA3/06LOMD71	VIT							

VKA3 Test Point for cones with threaded connection M 16×2 Series 3

With 24° cone swivel nut connection

X1) O-ring

Fig. B

							Weight		PN (bar) ¹)		DF**	
Series	D1	T1	L1	S1	S2	Fig.	g/1 piece	Order code*	CF	71	CF	71
L ³)	06	M 12×1.5	55	14	17	А	82	VKA3/06L	315	315	4	4
	08	M 14×1.5	51	17	17	А	82	VKA3/08L	315	315	4	4
	10	M 16×1.5	53	19	17	А	93	VKA3/10L	315	315	4	4
	12	M 18×1.5	53	22	17	А	107	VKA3/12L	315	315	4	4
	15	M 22×1.5	59	27	17	В	133	VKA3/15L	315	315	4	4
	18	M 26×1.5	59	32	17	В	163	VKA3/18L	315	315	4	4
	22	M 30×2.0	60	36	17	В	205	VKA3/22L	160	160	4	4
	28	M 36×2.0	64	41	17	В	269	VKA3/28L	160	160	4	4
	35	M 45×2.0	71	50	17	В	411	VKA3/35L	160	160	4	4
	42	M 52×2.0	72	60	17	В	592	VKA3/42L	160	160	4	4
S4)	06	M 14×1.5	50	17	17	А	81	VKA3/06S	630	630	4	4
	08	M 16×1.5	52	19	17	А	88	VKA3/08S	630	630	4	4
	10	M 18×1.5	53	22	17	А	99	VKA3/10S	630	630	4	4
	12	M 20×1.5	54	24	19	А	121	VKA3/12S	630	630	4	4
	14	M 22×1.5	59	27	17	В	136	VKA3/14S	630	630	4	4
	16	M 24×1.5	58	30	17	В	156	VKA3/16S	400	400	4	4
	20	M 30×2.0	65	36	17	В	223	VKA3/20S	400	400	4	4
	25	M 36×2.0	68	46	17	В	367	VKA3/25S	400	400	4	4
	30	M 42×2.0	74	50	17	В	444	VKA3/30S	400	400	4	4
	38	M 52×2.0	81	60	17	В	655	VKA3/38S	315	315	4	4

**DF = Design Factor

¹) Pressure shown = item deliverable

³) L = light series; ⁴) S = heavy series

 $\frac{\mathsf{PN}(\mathsf{bar})}{10} = \mathsf{PN}(\mathsf{MPa})$

Order code suffixes									
Material	Suffix surface and material	Example	Standard sealing material (no additonal. suffix needed)						
Steel, zinc plated, Cr(VI)-free	CF	VKA3/06LCF	NBR						
Stainless Steel	71	VKA3/06L71	VIT						

MAV...MA3Test point pressure gauge connector with threaded connection M 16×2MAVMD...MA3Test point with threaded connection M 16×2SMA3Test point high pressure hose with threaded connection M 16×2Series 3

Pressure gauge connector: MAV...MA3

T1	L1	L2 max.	S1	S2	Weight g/1 piece	Order code*	PN (bar)1) CF	DF**
G 1/4	54.0	12	19	19	74	MAV1/4MA3	630	4.0
G 1/2	64.0	12	27	19	129	MAV1/2MA3	630	4.0
G 1/4	41.0		19		61	MAVMD1/4MA3	630	4.0
G 1/2	51.5		27		103	MAVMD1/2MA3	630	4.0
	200.0				73	SMA3-200	630	2.5
	300.0				74	SMA3-300	630	2.5
	400.0				74	SMA3-400	630	2.5
	630.0				79	SMA3-630	630	2.5
	800.0				83	SMA3-800	630	2.5
	1000.0				87	SMA3-1000	630	2.5
	1500.0				95	SMA3-1500	630	2.5
	2000.0				105	SMA3-2000	630	2.5
	2500.0				110	SMA3-2500	630	2.5
	3200.0				125	SMA3-3200	630	2.5
	4000.0				137	SMA3-4000	630	2.5
**DE Dudin	- - - - - - - - - -							

DF = Design Factor		Order code suffixes						
¹) Pressure shown = item deliverable <u>PN (bar)</u> = PN (MPa)		Material	Suffix surface and material	Example	Standard sealing material (no additonal. suffix needed)			
10	below according to the material/ surface required.	Steel, zinc plated, Cr(VI)-free	CF	MAV1/4MA3CF	NBR			

* Sealing rings according to DIN 16258 for steel design of copper, for stainless steel design of stainless steel.

Note hoses with small diameter:

Min. bending radius r = 20 mm

Working temperature –20 °C up to 100 °C (short time to +120 °C)

Hoses are to be protected from fire, from sharp-corners and hot objects.

For measuring with liquid pressure media please note: Bleed before connecting tube! By capillary action discharge of the pressure medium is prevented widely.

Temperature factor of pressure rating:

up to	0°C	122 %
for	30 °C	110%
for	50 °C	100 %
for	80 °C	86 %
for	100 °C	77%

ServiceJunior

The ServiceJunior makes possible the measurement and display of pressures with one instrument. Measured values are shown with high precision on a 4-digit display. Pressure peaks are securely captured at a scanning rate of 10 ms.

- Digital pressure measurement and display
- Back-lit measured value display
- Accuracy ± 0,5% FS
- Pressure peaks captured by displaying MIN/MAX reading
- Graphic display with bar graph (trailing indicator), peak & hold function

ServiceJunior Kit

- Delivery in storage-case
- Incl. test point-adapters and test hoses

Catalogue 4054/UK

SensoControl[®]

ServiceJunior wireless

Utilising the ServiceJunior wireless from Parker's SensoControl family of products allows you to comfortably record the pressure values taken from one or several measurement points on your machine or installation. Stored measurement data is transmitted to a PC across distances of up to 150 meters.

- Measured data memory for storing pressure sequences
- Network operations: monitor several measurement points
- Read-out data from measured data memory to the PC via a radio interface
- Set and evaluate measurement data using PC software "JuniorWin"

Serviceman

The Serviceman has 2 inputs for sensors. This enables a differential pressure measurement by pressing only one key. Fast comparisons of actual and set values are done very easily.

- Easily operation
- Prevention of measuring errors due to automatic sensor recognition
- Two-line display
- Pressure peak measuring in 2 msec.

Serviceman Kit

- Delivery in storage-case
- Incl. test point-adapters and test hoses
- Attachments and sensors to measure pressure/ temperature, flow

Catalogue 4054/UK

SensoControl®

The Parker Service Master "Easy"

Measurement and display of up to four measured values simultaneously. Proportional technology differential values, addition, performance and signals are very easily analysed.

- Rapid fault diagnosis = high quality maintenance
- Pressure spike measurement 1 msec
- Measured value storage to record pressure sequences with various storage functions (auto trigger, start-stop, etc)
- USB PC interface
- Setting and evaluation of measurement data with "SensoWin" software.

SensoControl®

The Parker Service Master Plus

This high-end instrument with innovative and unique features is aimed at the future and is available worldwide.

- Analogue, CAN, LAN and USB interfaces
- Measured value display: numerical, bar graph, pointer, curve graph
- Measurement and display of more than 50 channels
- Measurement data are automatically displayed, stored and directly analysed with the proven "SensoWin" PC software
- Remote monitoring via LAN, regardless of location
- Everything is measured, stored, monitored and analysed: pressure, temperature, flow and speed
- Up to 4 million measured values per measurement. Total measured value storage for more than 1 billion measured values
- Extensive choice of trigger methods

The Parker Service Master Plus Kit:

- Delivery in storage-case
- Incl. attachments
- test point-adapters and test hoses

Pressure/Temperature sensor SCPT

- Measurement range up to 1,000 bar
- Accuracy ±0,25% FS typical
- Rugged stainless steel design
- Response time of 1 msec
- Flexible operation

Catalogue 4054/UK

Temperature sensor SCT

In hydraulics, temperature measurements serve to locate faults and avoid the kind of damage caused by excessive oil temperatures in critical parts such as pumps and proportional valves.

- High pressure-proof temperature sensor
- Measuring of oil temperatures up to 125°C

*) SPEEDCON®: Trademark of PHOENIX CONTACT GmbH & Co. KG

- Flexible operation
- Screw-in or manual sensor

Catalogue 4054/UK

Pressure/Temperature Sensor SCPT-CAN

All advantages of the analogue SCPT sensors combined with innovative CAN-bus technology. Up to eight sensors can be wired easily to a bus cable and quick-plug SPEEDCON[®]*) screw connection. Plug & Play functionality and no complex configuration required.

- Robust stainless steel design
- Response times of 1 msec
- Capturing of pressure peaks
- Future-proof CAN-bus technology
- Easy wiring with SPEEDCON[®]
- High cable lengths up to 100 m
- Sensor identification LED (SIL)

Catalogue 4054/UK

Hydraulic tester SCLV

These hydraulic testers can be used for precisely measuring flow, pressure and temperature. The testers can also be helpful when performing hydraulic system maintenance, locating error sources on directional control valves and making valve adjustments. The pressure-load valve, with its integrated bypass blow-out discs, makes it possible to build up pressure progressively in order to check the flow in an entire working area.

- Rapid fault diagnosis = high quality maintenance
- Three measurement ranges up to 750 l/min
- Pressure resistant up to 480 bar
- Integrated overload protection
- Reverse operation (Flow direction A-B)
- Also with CAN-Bus connection

Catalogue 4054/UK

Turbine flow meter type SCFT

A turbine wheel is driven by the oil flow. The frequencies thus produced are processed by digital electronics. The influence of turbulent flow effects is compensated for. Because of low flow resistance QR the hydraulic circuit operates with very low losses.

- Measurement range up to 750 l/min.
- Accuracy: 1% of measured value
- Pressure resistant up to 480 bar
- Small flow resistance
- Built-in pressure and temperature measurement ports
- Suitable for reverse operation

Catalogue 4054/UK

Tachometer SCRPM

Contactless measurement (opto-electronic principal) can be done quickly and easily. Rotational speed is detected, for example, at a main drive shaft (e.g. power take-off shaft of a tractor), and displayed on the hand-held device. Installation or adjustment is not necessary.

- Measurement range up to 10,000 RPM
- Accuracy ± 0.5% FS typically
- Easy and fast measuring

Catalogue 4054/UK

*) SPEEDCON®: Trademark of PHOENIX CONTACT GmbH & Co. KG

Turbine Flow Meter SCFT-CAN

- Flow turbine with CAN-Bus technology
- Six measurement ranges up to 750 l/min
- Easy assembly
- Pressure resistant up to 480 bar
- Small flow resistance
- Built-in pressure and temperature measurement ports
- Suitable for reverse operation
- Easy wiring with SPEEDCON®*)
- High conductor lengths up to 100 m

Catalogue 4054/UK

Flow Transducer SCQ

In the field of high pressure hydraulics, the rapid capture of the amount of flow is of great significance. The reaction times of the SCQ's enable the dynamic behaviour of hydraulic systems to be measured. The indication of direction is helpful when searching for faults in hydraulic systems.

- Measurement principle: spring/piston
- Response time: ≤ 2 ms
- Compact construction
- Pressure resistant up to 420 bar
- Wide viscosity range
- Mounting with the connection block permits a combined measurement of p, T and Q.

SensoControl® Controller Family

The Controllers are used in control, regulating and monitoring systems when switching or analogue signals, or a display, are required. The Controllers can replace

• mechanical switches

 mechanical displays (manometers, thermometers, sight glasses)

sensors

and combine all the functions of the above-mentioned components in one instrument.

- large display
- freely settable
- rugged metal design
- compact
- Iong-term stability
- reliable
- interference-free

Catalogue 4083

SensoControl®

Pressure Controller SCPSD

Simple operation, comprehensive functionality and long working life are the major features of the electronic SCPSD Pressure Controller.

Features:

- Bar/PSI/MPa
- compact design
- rotatable
- rugged housing (IP 67)
- simple operation
- 2 switching outputs
- 4 switching points
- settable analogue output
- time delay (damping)
- hysteresis/window function
- password

If pressure is to be displayed, or the requirement is for rapid switching or analogue signals, which can be set simply and without additional adjustments, then the SCPSD is the ideal solution.

Temperature Controller SCTSD

Simple operation and comprehensive functionality are the major features of the electronic SCTSD Temperature Controller.

Features:

- °C and °F
 compact design
- rotatable
- rugged housing (IP 67)
- simple operation
- 2 switching outputs
- 4 switching points
- settable analogue output
- delay times (damping)
- hysteresis/window function
- password

If temperature is to be displayed, or the requirement is for temperature-dependent switching or analogue signals, which can be set simply and without additional adjustments, then the SCTSD is the ideal solution.

Catalogue 4083

SensoControl®

LevelController SCLSD

Simple operation and comprehensive functionality are the major features of the electronic SCLSD LevelController.

- level display in mm/inch/%
- compact design
- rotatable
- rugged housing (IP 67)
- settable via menu
- high & low display
- switching output
- analogue output
- proven float measuring system
- simple operation
- flexible installation
- hysteresis/window function

The LevelController is very suitable for monitoring tank levels. With its menu-controlled setting of level switching points, a very wide range of applications can be conveniently carried out. If the percentage display is selected, the fullness level is shown to the operator in a consistent manner, independently of the tank shape.

LevelTempController SCLTSD

Simple operation and comprehensive functionality are the major features of the electronic SCLTSD LevelTempController.

Features:

- temperature and level
- compact design
- rotatable
- rugged housing (IP67)
- simple operation
- menu-controlled setting
- probe
- Iocating bore
- switching output
- analogue output
- hysteresis/window function
- password

With the LevelTempController it is possible to set and display temperature and level separately on a common platform. It is precisely in the field of tank monitoring that the integration of level and temperature shows its unique potential.

Catalogue 4083

SensoControl[®]

OilTankController SCOTC

The **OilTankController** offers standardised connection points for an air filter and a filler coupling, which are additional to the **LevelTempController**.

It is precisely in the field of tank monitoring for series production that the integration of level and temperature, in combination with the air filter and filler coupling, shows its unique potential. Only one location bore is required for all 4 functions.

- proven measuring system
- level and temperature display
- mm/inch/% displays
- high and low display
- only one bore
- continuous level measurement
 - connections:
- filler coupling
- air filter
- under-pressure
- no surge tube needed

Pressure sensor SCP Mini

The SCP Mini pressure sensor was designed for industrial application needs and is used in control, regulating and monitoring systems, when the requirement is for rapid pressure-dependent analogue signals. The SCP Mini sensor is noted for its compact design, high linearity and excellent interference resistance.

- stainless steel cell
- small size
- high burst pressure
- resistant to pressure peaks
- shock and vibration resistant
- wide media compatibility
- high linearity
- long-term stability

Catalogue 4083

SensoControl[®]

Pressure sensor SCP-EX

The SCP-EX pressure sensor was designed for the requirements of applications where there is a risk of explosion (II 2G EEx ia IIC T4) and is used in control, regulating and monitoring systems when there is a requirement for pressure-dependent analogue signals.

- rugged
- Iong-term stability
- reliable
- stainless steel
- EEx ia

Pressur sensor SCP-Mobil

The SCP-Mobil was specially developed for mobile hydraulic applications and may be modified to suit special customer requirements. With its rugged and compact construction the hermatically-welded stainless steel membrane guarantees high long-term stability and freedom from leaks. The pressure cell is completely vacuum-tight, extremely resistant to bursting and accommodates all the standard media used in motor vehicles, mobile hydraulics and testing technologies. Thanks to its mechanical construction, a high degree of accuracy and long-term stability are guaranteed.

- Compact construction
- Stainless steel cell
- Load Dump Protection
- High burst pressure
- Pressure peak damping
- Shock and vibration-proof
- Vibration 50 g
- IP 65 high protection class
- High over-voltage protection
- High reverse polarity protection
- EMC up to 300 V/m

Catalogue 4083

CanBus SCP

Pressure/Temperature Sensor with CANopen technology

Flexible, innovative and reliable

The new pressure/temperature sensor in the SCPT series offers flexible application possibilities in automation technology. Besides the pressure and temperature measurement combination, CANopen technology offers the designer cost-effective and reliable measuring technology.

Technical data:

- Pressure range (measuring range)
- -1...16 / 0...60/150/400/600/1000 bar
- Temperature range (measuring range) -25°C ... +105°C (± 2,0% FS max.)
- Accuracy $\pm 0,25\%$ FS (typ.)
- Response time 1 ms
- Housing stainless steel 1.4404
 Sealing FKM
- Connections electrical M12 5-pin hydraulic ½["] BSP
- CANopenDS 301 v 4.1Type2.0 AProfileDS 404 v 1.2FunctionsLSS (DSS 305 v 2.0)

Advantages

- Combined pressure and temperature measurement
- Digital measured value capture and transmission
- Error monitoring/self-diagnosis
- Heartbeat function/SYNC

Applications

- Hydraulics/pneumatics
- Automation technology
- Paper machinery/automotive/mobile hydraulics

Leaflet 4059/UK

Temperature sensor SCT

Compact construction and high pressure resistance are the main features of the SCT temperature sensor. The SCT is ideal for use when temperatures at higher pressures are to be measured and a compact construction is required. With its pressure resistance up to 630 bar, the SCT temperature sensor is very suitable for hydraulic application requirements. It has the ability to make precise, rapid temperature measurements. SCT series temperature sensors are compatible with the SCE built-in measuring instruments. With the latter, besides the hydraulic pressure, the temperature of the medium too can be measured, controlled and evaluated.

- Pressure-proof up to 630 bar
- Compact construction
- Rugged steel housing
- Simple installation
- -50°C to +125°C
- 0/4...20 mA

Catalogue 4083

SensoControl[®]

SCE-020 digital display instrument

Plenty of connections, flexible display and copious outputs are the main features of the SCE digital display instrument. The SCE-020 converts standard analogue signals (in the ranges 0...10 V up to 0/4...20 mA) into clearly understandable measurement values/units. Consequently with the SCE-020, any sensor required (pressure, temperature, torque, length, etc) can be easily displayed.

- Easily readable digital display
- Programmable
- Easily selectable units
- Display range can be set
- Input:

Current: 0/4...20 mA Voltage: 0...10 V Frequency: 0...8 kHz

- Switching output
- Loop-through function: analogue output, serial interface
- Standard housing 96×48 mm

Ermeto Original **Tubes**

Tubes

General recommendations for tubes

1. Steel types, mechanical properties, conditions

Steel types, mechanical properties and conditions of EO steel tubes

Steel type	Tensile strength Rm	Yield point ReH	Ductile yield A5 (longit.)	Condition
Fine grain E235N acc. to EN 10305-4 (St. 37.4 acc. to DIN 1630/DIN 2391 old designation)	340 N/mm ² min. 49,000 lb/in ²	235 N/mm ² min. 34,000 lb/in ²	25% min.	Seamless, cold drawn, normal annealed, DIN EN 10305-1 and -4

Steel types, mechanical properties and conditions of EO stainless steel tubes

Steel type Tensile strength Rm		Yield point (1% proof stress)	Ductile yield A5 (longit.)	Condition
1.4571 X6CrNiMoTi17122	500 N/mm ² min. 72,500 lb/in ²	245 N/mm ² min. 35,500 lb/in ²	35% min.	Seamless, cold drawn free of scale, heat treated in accordance with DIN EN 10216-5 tab. 6

2. Tests and certifications

All tubes are subjected to a non-destructive leak test and marked accordingly as proof. This marking replaces a works certificate DIN EN 10204-2.2. Test class 1 DIN EN 10216-5 Table 7 applies for tubes made of 1.4571.

3. Recommended bend radius

A bend radius of 3x the external tube diameter is recommended for cold bending of tubes with tube benders or by hand.

4. Welding suitability and weldability

Tubes of E235N are weldable according to usual techniques. Types made of 1.4571 (stainless) are suitable for arc welding. The welding filler should be selected in accordance with DIN EN 1600 and DIN EN 12072 part 1 taking into account the type of application and the welding technique.

5. Approximate calculation of the flow resistance in straight tubelines

The flow resistance and thus the tubeline efficiency is influenced by the tube inside diameter, the volume flow (measured or calculated) and the properties of the medium. Laminar flow should be considered in order to keep losses in the system down to a minimum. The transition from laminar to turbulent flow, which brings an increase in the flow resistance is generally defined by the Reynolds number Re 2320. Since the transition cannot be pinpointed exactly, the transition range can only be determined by measuring. If, for simplified calculation, transition at Re 2320 and a "technically smooth" tube inner surface are assumed, the limit speeds w crit. and the laminar to turbulent flow volume flow v crit. when transition takes place, can be estimated according to the following formulas:

$$\begin{split} w_{crit.} &= \frac{2.32 \cdot \nu}{d_i} \ [m \ / \ s] \\ \dot{\nu}_{crit.} &= 0.109 \cdot d_i \cdot \nu \ [l \ / \ min] \\ d_i &= tube \ bore \ \varnothing \ in \ mm \\ \nu &= kinematic \ viscosity \ in \ mm^2 \ / \ s. \end{split}$$

For approximate calculation of the pressure drop in bar/1 m tube length, the following formulas can be used:

1. Laminar range:

$$\rho_{v} = \frac{0.32 \cdot w \cdot v \cdot \rho}{d_{i}^{2} \cdot 10^{3}} = \frac{6.79 \cdot \dot{v} \cdot v \cdot \rho}{d_{i}^{4} \cdot 10^{3}} \text{ [bar / 1 m]}$$

2. Turbulent range:

$$\rho_{v} = \frac{0.281 \cdot w^{1.75} \cdot v^{0.25} \cdot \rho}{d_{i}^{1.25} \cdot 10^{3}}$$
$$= \frac{59 \cdot \dot{v}^{1.75} \cdot v^{0.25} \cdot \rho}{d_{i}^{4.75} \cdot 10^{3}} \text{ [bar / 1 m]}$$

w = flow speed in m/s; v = kinetic viscosity in mm²/s; \dot{v} = volume flow in l/min.; ρ = density of the medium in kg/m³; d_i = pipe internal diameter in mm.

Detailed calculations of the flow resistance require an exact knowledge of the tubeline system and the operating conditions. Refer to the relevant literature for other methods of calculations.

Seamless EO steel tubes Material E235N (St. 37.4)

Tolerances DIN EN 10305-4

Order code						Design pre	essure bar		
Phosphated	Cr(VI)-	Tube	Tolerance	Wall	Tube	DIN	DIN	Burst	
and oiled	free	O.D.		thickness	I.D.	2413	2413 III	pressure	Weight
		(mm)		(mm)	(mm)	Static	Dynamic	bar	kg/m
B04X0.5	B04X0.5CE	4		0.50	3.0	313	273	1160	0.047
	B04X0.75CF	4	+0.08	0.75	2.5	470	391	1820	0.063
R04X1	R04X1CF	4		1.00	2.0	627	500	2700	0.074
	R05X1CF	5	±0.08	1.00	3.0	501	416	2120	0.099
	R06X0.75CF	6		0.75	4.5	333	288	1150	0.103
R06X1	R06X1CF	6		1.00	4.0	444	372	1650	0.123
R06X1.5	R06X1.5CF	6	±0.08	1.50	3.0	666	526	2550	0.166
	R06X2CF	6		2.00	2.0	692	662	>3500	0.197
	R06X2.25CF	6		2.25	1.5	757	725	>3500	0.208
R08X1	R08X1CF	8		1.00	6.0	333	288	1175	0.173
R08X1.5	R08X1.5CF	8	±0.08	1.50	5.0	499	412	1925	0.240
R08X2	R08X2CF	8		2.00	4.0	666	526	2500	0.296
	R08X2.5CF	8		2.50	3.0	658	630	2650	0.339
R10X1	R10X1CF	10		1.00	8.0	282	248	900	0.222
R10X1.5	R10X1.5CF	10		1.50	7.0	423	357	1450	0.314
R10X2	R10X2CF	10	±0.08	2.00	6.0	564	458	2025	0.395
	R10X2.5CF	10		2.50	5.0	705	551	2675	0.462
	R10X3CF	10		3.00	4.0	666	638	>3500	0.518
R12X1	R12X1CF	12		1.00	10.0	235	209	750	0.271
R12X1.5	R12X1.5CF	12		1.50	9.0	353	303	1150	0.388
R12X2	R12X2CF	12	±0.08	2.00	8.0	470	391	1600	0.493
	R12X2.5CF	12		2.50	7.0	588	474	2025	0.586
	R12X3CF	12		3.00	6.0	705	551	2600	0.666
	R12X3.5CF	12		3.50	5.0	651	624		0.734
	R14X1.5CF	14		1.50	11.0	302	264	975	0.462
R14X2	R14X2CF	14		2.00	10.0	403	342	1325	0.592
	R14X2.5CF	14	±0.08	2.50	9.0	504	415	1650	0.709
R14X3	R14X3CF	14		3.00	8.0	604	485	2200	0.814
		14		3.50	7.0	705	551	2625	0.906
R15X1	R15X1CF	15		1.00	13.0	188	170	575	0.345
R15X1.5	R15X1.5CF	15	0.00	1.50	12.0	282	248	950	0.499
RISXZ	RISX2CF	15	±0.08	2.00	11.0	376	321	1275	0.641
Diavit E	DIAXI FOF	15		3.00	9.0	304	458	2000	0.888
R16X1.5	R16X1.5CF	16	0.00	1.50	13.0	264	233	850	0.536
H16X2	RIDAZUE	16	±0.08	2.00	12.0	353	303	11/5	0.691
D16V2.5	D16V2CE	10		2.50	10.0	44 I 500	3/0	1000	0.832
RIDAJ	DIOXICE	10		3.00	10.0	529	433	1050	0.962
H18X1	R18X1CF	18		1.00	16.0	15/	143	450	0.419
H18X1.5	RISX1.5CF	18	. 0. 00	1.50	15.0	235	209	/00	0.610
H18X2	RISAZUE	18	±0.08	2.00	14.0	313	2/3	9/5	0.789
H1872.2	RIOAZ.SUF			2.50	13.0	392	333	1300	0.956
		I I Ö	1	3.00	12.0	4/0	391	10/5	I.I.I.I

Surface finish:

· Phosphated and oiled:

• Tubes with I.D. 1.5-5 mm: outside and inside oiled.

• Tubes from 6 mm I.D.: outside and inside phosphated and oiled.

Calculation pressures:

Calculation pressures given are according to DIN 2413 part I for static stress

$$P = \frac{20 \cdot K \cdot s \cdot c}{S \cdot d_a}$$
 (bar)

Material characteristic value K = $235N/mm^2$ and DIN 2413 part III for **dynamic stress**

$$P = \frac{20 \cdot K \cdot s \cdot c}{S \cdot (da + s \cdot c)}$$
(bar)

Material characteristic value $K = 226 \text{ N/mm}^2$ (permanent fatigue strength) • Cr(VI)-free:

These dimensions are externally thick coat passivated (thickness of coat 8–12 μ m), inside oiled.

Safety correction value S = 1.5 for static and dynamic stress, S = wallthickness.

Factor c for consideration of wall thickness divergence for static and dynamic stress = 0.8 for tube O.D. 4

and 5; 0.85 for tube o.d. 6 and 8; 0.9 for larger tube O.D.

Seamless EO steel tubes (Continued) Material E235N (St. 37.4)

Tolerances DIN EN 10305-4

Order code						Design pre	essure bar		
Phosphated	Cr(VI)-	Tube	Tolerance	Wall	Tube	DIN	DIN	Burst	
and oiled	free	O.D.		thickness	L.D.	24131	2413 III	pressure	Weight
		(mm)		(mm)	(mm)	Static	Dynamic	bar	ka/m
	DOOX1 FOF			1.50	17.0	010	100	675	0.694
POOVO		20		1.50	17.0	212	190	0/5	0.084
		20	+0.09	2.00	16.0	202	240	1100	1.000
D20X2.3		20	±0.00	2.50	14.0	400	303	1400	1.079
HZUA3		20		3.00	14.0	423	307	1400	1.200
	D20X3.3CF	20		3.50	12.0	494	400	2000	1.424
DOOV1 F	D20X1 505	20		4.00	10.0	100	430	2000	0.759
R22X1.0	RZZAI.SUF	22	.0.00	1.50	19.0	192	1/3	550	0.756
		22	±0.08	2.00	18.0	200	227	1005	0.986
R22A2.3		22		2.50	17.0	320	270	1175	1.202
DAEVA	RZZAJUF	22		3.00	10.0	300	320	1175	1.400
R25X2	R25X2CF	25		2.00	21.0	226	201	/25	1.134
R25X2.5	R25X2.5CF	25	. 0. 00	2.50	20.0	282	248	850	1.387
H25X3	R25X3CF	25	±0.08	3.00	19.0	338	292	1025	1.628
R23X4		20		4.00	17.0	451	3/8	1500	2.072
R2374.3	R23A4.3CF	20		4.50	16.0	506	410	1025	2.275
R28X1.5	R28X1.5CF	28		1.50	25.0	151	138	425	0.980
R28X2	R28X2CF	28	0.00	2.00	24.0	201	181	600	1.282
R28X2.5	R28X2.5CF	28	±0.08	2.50	23.0	252	223	750	1.5/2
R28X3	R28X3CF	28		3.00	22.0	302	264	900	1.850
Baava E	R30X2CF	30		2.00	26.0	188	170	575	1.381
R30X2.5	R30X2.5CF	30		2.50	25.0	235	209	/25	1.695
H3UX3	RJUXJCF	30	±0.08	3.00	24.0	282	248	850	1.998
R3UX4	R3UX4CF	30		4.00	22.0	376	321	11/5	2.565
R30X5	RJUXSUF	30		5.00	20.0	470	391	1600	3.083
R35X2	R35X2CF	35		2.00	31.0	161	147	450	1.628
H35X2.5	RJ5X2.5CF	35	.0.15	2.50	30.0	201	181	600	2.004
H35X3	R35X3CF	35	±0.15	3.00	29.0	242	215	700	2.367
		35		4.00	27.0	322	280	960	3.058
Daava	H38X2.5CF	38		2.50	33.0	186	168	550	2.189
H38X3	R38X3CF	38	.0.15	3.00	32.0	223	199	675	2.589
HJÖX4		38	±0.15	4.00	30.0	297	260	900	3.354
H30X5	RJ8X5CF	38		5.00	28.0	3/1	318	1150	4.069
		38		0.00	20.0	445	3/3	1425	4./35
		30		7.00	24.0	519	427	1700	0.302
R42X2	R42X2CF	42		2.00	38.0	134	123	375	1.973
R42X3	R42X3CF	42	±0.2	3.00	36.0	201	181	575	2.885
R42X4	H42X4CF	42		4.00	34.0	269	237	850	3.749
R50X6		50	±0.2	6.00	38.0	338	292		6.511
R65X8		65	±0.3	8.00	49.0	347	299		11.246

Remarks:

Corrosion – additional allowances are not considered for the calculation of pressures. Tube with a diameter ratio of

 $\frac{da}{di_{max.}}$ > 2 are calculated for static stress in

accordance with DIN 2413 coverage III, but with $K = 235 \text{ N/mm}^2$.

When a specific factor of safety is required, calculations should be based upon the burst pressures shown in the above tables.

Temperature range: -40° up to 120°C without pressure reductions.

For increased temperatures:

control calculation according to DIN 2413 required (static application above 120 °C).

$$P = \frac{20 \cdot K \cdot s \cdot c}{S (da - s \cdot c)}$$

Material strength K for increased temperatures:

Temperature in °C	K (Nmm ²)
up to 200	185
up to 250	165

R

Seamless EO stainless steel tubes Material-No.: 1.4571

Tolerances DIN EN 10305-1

Order code					1.4571		
					Design		
1.4571	Tube	Tolerance	Wall	Tube	pressure bar	1.4571	
	O.D.		thickness	I.D.	DIN 2413 I	burst pressure	Weight
	(mm)		(mm)	(mm)	Static	bar	kg/m
R04X171	4	±0.08	1.0	2	735		0.075
R06X171	6	±0.08	1.0	4	490	1850	0.125
R06X1.571	6	±0.08	1.5	3	735	2900	0.169
R08X171	8	±0.08	1.0	6	368	1300	0.175
R08X1.571	8		1.5	5	551	2050	0.244
R10X171	10		1.0	8	294	950	0.225
R10X1.571	10	±0.08	1.5	7	441	1750	0.319
R10X271	10		2.0	6	588	2400	0.401
R12X171	12		1.0	10	245	850	0.275
R12X1.571	12	±0.08	1.5	9	368	1400	0.394
R12X2/1	12		2.0	8	490	1900	0.501
R14X1.571	14	0.00	1.5	11	315	1200	0.469
R14X2/1	14	±0.08	2.0	10	420	1550	0.601
R14X2.3/1	14		2.5	9	525	2100	0.720
R15X171	15	0.00	1.0	13	196	675	0.351
R15X1.5/1	15	±0.08	1.5	12	294	1100	0.507
R13X2/1	15		2.0	11	392	1400	0.001
R16X1.571	16	±0.08	1.5	13	276	950	0.545
R10X2/1	10	.0.00	2.0	12	368	1300	0.701
R10A2.3/1	10	±0.08	2.5	10	409	2400	0.845
D10X1 571	10	.0.00	3.0	10	045	2400	0.977
RIOX1.5/1	18	±0.08	1.5	15	245	800	0.620
B20V271	10		2.0	14	327	1050	0.001
R20A27 I	20	0.09	2.0	15	294	1400	1.005
R20X2.371	20	±0.00	2.5	14	441	1400	1.095
P22V1 571	20	+0.08	1.5	10	200	650	0.770
R22X1.3/1	22	±0.00	2.0	18	267	900	1 002
D25V2 571	25	+0.08	2.5	20	207	1050	1.002
R25X2.571	25	±0.00	3.0	19	253	1275	1.400
B28¥1 571	28	+0.08	1.5	25	158	550	0.995
R28X271	28	±0.00	2.0	23	210	700	1.302
B20V2 571	20	+0.08	2.5	25	245	950	1.002
R30X2.571	30	+0.08	3.0	23	294	1150	2 028
R30X471	30	±0.00	4.0	22	392	1500	2.605
R35X271	35	±0.15	2.0	31	168	550	1.653
R38X471	38	±0.15	4.0	30	309	1150	3.405
B42X271	42	+0.2	2.0	38	140	475	2 003
R42X371	42	10.2	3.0	36	210	750	2.930

Seamless EO stainless steel tubes (continued) Material-No.: 1.4571

Calculation pressure:

Calculation pressures given are according to DIN 2413 part I for **static stress**

$$P = \frac{20 \cdot K \cdot s \cdot c}{S \cdot d_a}$$
 (bar)

Material characteristic value K = 245 N/mm² (1.4571) (1% proof stress)

Safety factor S = 1.5

Factor c for consideration of wall thickness divergence: 0.9

For range of application for which a certain safety value compared to burst pressure is demanded for tubes of 1.4571 grade stainless steel, the measured burst pressures are contained in tube-tables.

Calculation pressures according to DIN EN 2413 part III for **dynamic stress** are not listed, because in DIN 17458 the permanent fatigue stress is not listed. Until standards will be available for gauge localization of permanent fatigue strength we recommend for calculations to use DIN EN 2413 part III with the following characteristic values:

permanent fatigue strength K=190 N/mm² for tubes of 1.4571; S = 1.5; C = 0.9.

Remarks:

Corrosion: additional allowances are not considered for the calculation of pressures.

Tubes with a diameter proportion da/di \ge 1.35 are calculated according to DIN 2413 III with above characteristic values.

Permissible temperature range and required

pressure reductions. This is based on calculated pressures at the elevated temperatures shown, taking into consideration the recommended reduction in proof stress (DIN EN 10216-5).

Temperature	–60° up to +20° C	50°C	100°C	200°C	300°C	400°C
Pressure reductions 1.4571 in %	-	5.5	11.5	21.5	29	34

Interpolation is acceptable for intermediate temperature levels.

Seamless EO steel tubes Material C-Steel

for hydraulic and pneumatic pressure lines. SAE J 524. C-Steel. Test according ASTM A 179-90 A/ASME SA 179. Quality and leak tested.

Order code				Design pre	essure bar		
(With Tube O.D.			Wall	DIN	DIN	burst	
and wall thickness	Tube O.D.	Tolerance	thickness	2413 I	2413 III	pressure	Weight
Inch)	(mm)		(mm)	Static	Dynamic	bar	kg/m
R1/4X0.049	6.35	±0.08	1.24	553	450	-	0.157
R3/8X0.049PHR	9.53	±0.08	1.24	368	316	-	0.254
R3/8X0.065PHR	9.53	±0.08	1.65	489	405	_	0.321
R1/2X0.049PHR	12.70	±0.08	1.24	276	243	-	0.352
R1/2X0.065PHR	12.70	±0.08	1.65	367	314	_	0.450
R5/8X0.083PHR	16.00	±0.08	2.11	374	320	_	0.716
R3/4X0.095PHR	19.05	±0.08	2.41	357	307	_	0.990
R3/4X0.109PHR	19.05	±0.08	2.67	410	347	_	1.112
R1X0.095PHR	25.40	±0.08	2.41	268	236	_	1.368
R1X0.120PHR	25.40	±0.08	3.05	338	292	_	1.680
R11/4X0.120PHR	31.75	±0.08	3.05	271	239	_	2.157
R11/2X0.156PHR	38.10	±0.15	3.96	293	257	_	3.336

Seamless EO tube bends 90° Material E235N (St. 37.4) and 1.4571

For minimum pressure loss

Order	code	Tube		Wall-	Tube	Bending					
Cr(VI)-free	1.4571	O.D.	Tolerance	thickness	I.D.	radius	Leg length		Length		Weight
		D	±	S	mm	R	а	b	L1	L2	kg/piece
RB16X2CF	RB16X271	16	0.08	2.0	12	30	200	40	230	70	0.198
RB18X1.5CF	RB18X1.571	18	0.08	1.5	15	36	200	35	236	71	0.178
RB20X2CF		20	0.08	2.0	16	36	200	45	236	81	0.268
RB20X2.5CF	RB20X2.571	20	0.08	2.5	15	36	200	45	236	81	0.326
RB22X1.5CF		22	0.08	1.5	19	38	200	40	238	78	0.227
RB22X2CF	RB22X271	22	0.08	2.0	18	38	200	40	238	78	0.296
RB25X2CF		25	0.08	2.0	21	44	200	50	244	94	0.362
RB25X2.5CF	RB25X2.571	25	0.08	2.5	20	44	200	50	244	94	0.442
RB25X3CF		25	0.08	3.0	19	44	200	50	244	94	0.519
RB28X1.5CF		28	0.08	1.5	25	48	200	50	248	98	0.319
RB28X2CF	RB28X271	28	0.08	2.0	24	48	200	50	248	98	0.417
RB28X3CF		28	0.08	3.0	22	48	200	50	248	98	0.601
RB30X2.5CF		30	0.08	2.5	25	50	200	60	250	110	0.575
RB30X3CF	RB30X371	30	0.08	3.0	24	50	200	60	250	110	0.677
RB30X4CF		30	0.08	4.0	22	50	200	60	250	110	0.869
RB35X2CF	RB35X271	35	0.15	2.0	31	60	200	65	260	125	0.586
RB35X3CF		35	0.15	3.0	29	60	200	65	260	125	0.852
RB38X2.5CF		38	0.15	2.5	33	65	200	75	265	140	0.827
RB38X3CF		38	0.15	3.0	32	65	200	75	265	140	0.979
RB38X4CF	RB38X471	38	0.15	4.0	30	65	200	75	265	140	1.268
RB38X5CF		38	0.15	5.0	28	65	200	75	265	140	1.538
RB42X2CF	RB42X271	42	0.20	2.0	38	80	200	85	280	165	0.809
RB42X3CF		42	0.20	3.0	36	80	200	85	280	165	1.183
RB50X6*		50	0.20	6.0	38	180	150	150	330	330	3.496
RB65X8*		65	0.30	8.0	49	180	160	160	330	330	6.294

Tolerances for leg length a, $b = \pm 2.5$ mm

For tube bends, contrary to straight tubes of the same wall thickness there is a higher stress at the inside of the bend and a reduction of the fatigue strength, because of the out-of-round of tube. Details see DIN 2413 III section 4.7.

If the elbow end is cut off to a different length, a recalibration of the tube end may be necessary.

Tube bends material E235N (St. 37.4) are phosphated and oiled. (Yellow chromated on request.)

*phosphated and oiled

